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The fractional step method for selving the incompressible
Navier-Stokes equations in primitive variables is analyzed as a block LU
decomposition. In this formulation the issues involving boundary
conditions for the intermediate velocity variables and the pressure are
clearly resolved. In addition, it is shown that poor temporal accuracy
{first-order} is not due to boundary conditions, but due to the method
itself. A generalized block LU decomposition that overcomes this
difficulty is presented, allowing arbitrarily high temporal order of
accuracy. The generalized decompasition is shown to be useful for a
wide range of problems including steady problems. Technical issues,
such as stability and the appropriate pressure update scheme, are also
addressed. Numerical simulations of the unsteady, incompressible
Navier-Stokes equations in a square domain confirm the theoretical
results.  © 1993 Academic Press, Inc.

1. INTRODUCTION

This paper is concerned with techniques for the solution
of the unsteady, incompressible Navier—Stokes equations in
primative variables, In particular, it is concerned with a for-
mulation first introduced independently by Chorin [1] and
Temam [2] and now referred to as the fractional step
method. Despite many advantages and extensive use in the
past by numerous researchers [3-5], the fractional step
method has a few major drawbacks. In general, the method
is first-order accurate in time, and serious confusion and/or
disagreement concerning boundary conditions and the
details of the methods implementation exists. This paper
shows that these problems can be resolved by resisting the
urge to view the fractional step method as a time splitting
and, instead, viewing it as an approximate block LU
factorization of the fully discretized equations.

Consider the non-dimensionalized unsteady incom-
pressibie Navier—Stokes equations

ou 1 _,
—+w-V)u= —Vp+ReV u,

> (1a)

V-u=0. (1b}

Straightforward discretization of these equations will
produce a system of equations of the form

A G\/v! _(r)+(b-c’s)
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n+1

(2)

where A, G, and D are submatrices, v and p"*! are the
unknown discrete velocity and pressure vectors, and the
right-hand side vector, r, contains all those quantities that
are already known.

For example, if the diffusive terms are updated using the
trapezoidal or Crank—Nicholson method, the convective
terms are updated using the second-order Adams-
Bashforth method, and the spatial discretization is accom-
plished with a finite volume discretization or with lumped
finite elements, then the Navier—Stokes equations become
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(3b)

where H(v") is the discrete convective operator (presumably
evaluated in some conservative fashion), L is the discrete
Laplacian operator, I} is the discrete divergence operator,
and G is the discrete gradient operator,

It is important to note that the boundary conditions have
already been incorporated at this point. The exact forms of
the matrices L, D, and G are dependent on the boundary
conditions. The unknowns, ¥"*' and p"*' refer to only
those nodes in the interior of the domain, not to boundary
nodes. If it is assumed that all pressure nodes are interior
to the domain {which is almost always the case), then
boundary conditions on the pressure arc not required [3].
This is most easily seen by expanding (3a) for a node near
the boundary. In addition, for periodic, homogeneous
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no-slip, or no stress boundary conditions on the velocity,
the boundary condition vectors are identically zero. They
are retained throughout this analysis for generality.

Rearranging the relations (3a) and (3b} in the form given
by Eq. (2), it is found that

A—i [—-'A—rL
T, 2Re |’

1 At n é " l n—1

(4a)

The exact expressions for 4 and r are dependent on the
specific temporal and spatial discretizations that were
chosen, but the previous example is fairly typical, implicit
on the diffusive terms for stability and explicit on the con-
vective terms for simplicity. For a fully explicit method, the
matrix A4 is simply 1/4¢ times the identity matrix. For a fully
implicit method, the matrix 4 would contain elements from
the linearized convective terms. An unlumped finite element
method might have 4= (1/46)[M — (4¢/2 Re)L], where
M is a sparse “mass matrix.” In any case, the resulting
equations can be put in the general form given by (2).

It is possible to create primative variable formulations
that avoid the solution for p” ! altogether and do not have
the form given by Eq. (2). These methods avoid most of the
problems inherent in solving for the pressure. This is accom-
plished by employing a judicious manipulation of the equa-
tions [6,7] or a clever choice of basis functions [8, 9].
Unfortunately, these methods inevitably require spatial
operators with at least fourth-order accuracy or greater,
and often they require simple geometries or boundary
conditions. For these reasons discretizations of the form
given by (2) are often desirable or inevitable.

Having committed curselves to a formulation of the form
given by Eq. (2), we must note that this system is not easy
to solve. Although the system is typically ‘sparse, it is also
large and indefinite. The submatrices D and G are not
square, and only the submatrix A4 is invertable. Ideally, we
would like to simplify the problem and take advantage of
some of the properties of the submatrices that might make
inversion easier, For instance, usually D=G7, and often 4
is symmetric and positive definite. On Cartesian finite
difference or finite velume grids, 4 is block diagonal and
can be further factored into a series of tridiagonals. The next
section shows how these properties of the submatrices can
be fully utilized.

2. BLOCK LU DECOMPOSITION

Given a system of equations, with a form such as Eq. (2),
the most obvious way to remove the indefiniteness and solve

the problem is to approximate the divergence equation and
solve the system

(5 -6
D A\ ptt! _(}.p" b-c's)’

with A as small as numerically possible. This is typically
referred to as an artificial compressibility method or a
penalty method [10], and although it is commonly used, it
has a number of major drawbacks. For unsteady problems
the accuracy is O{A). The appropriate value of the
parameter 2 is not obvious (overly small values of A make
the system ill-conditioned), and the size of the system has
not been reduced. Finally, the discrete continuity equation
is violated.

Instead, let us consider another approximation to Eq. (2},

A (At )G/ [ 4 ’hc's

(b )=o)+ (o)
In this case the pressure gradient term in the momentum
equations has been altered. For our previous example
(4t A)=TF— (412 Re)L], so the relation (6) is a first-
order temporal approximation of Eq. (2) with an error term
{41/2 Re) LGp"*'. Fortunately, the error term is diffusive
and tends to aid stability. More complicated expressions
for A are easily covered by the generalized method to be
presented later. Note that only the momentum equations
are approximated. The discrete continuity equation remains
unaltered, since it is important to satisfy the discrete
continuity equations (and not create mass), if a realistic
solution is desired.

The approximate system given by (6) can be factored into
the block LU decomposition

(A 0 v¥ A 4

D —A:DG)(;;"“)“(O)
I AtG)(v"“)_( v* )
(0 7 pn+-1 - pn-\r—l. .

Further simplified this results in the series of operations

(5)

(6)

‘b -c’s) (7a)

bec's
and

(7b)

Av*=r+b-c's, (8a)
At DGp"t = Dv¥ —b-¢'s, (8b)
Vit =yr A Gp" . (8¢)

Note that v* is simply an intermediate variable, defined by
either (7a) or (8a). The boundary condition vectors are the
same as those defined in {2}. There is no ambiguity in the
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operations given by the relations (8a)-(8c). In particular,
boundary conditions on ¥* and p”*! are not required.

In addition to preserving discrete incompressibility, the
block LU factorization embodied by (8a)}—(8c) has decom-
posed a large indefinite system into two smaller, far better
behaved problems, a matrix inversion for v* and a discrete
Poisson-like equation for p”*'. The disadvantage of first-
order temporal accuracy will soon be remedied by the
generalized block LU decomposition.

3. SIMILARITY WITH THE FRACTIONAL STEP METHOD

This section shows that the block LU decomposition is
cssentially a fully discrete version of the fractional step
method, which is usually presented as a semi-discrete time
splitting. The subtle differences in approach, however, are
enough to enable the block LU decomposition to overcome
most of the problems encountered by the traditional
fractional step method.

The fractional step method begins {from a time discretiza-
tion of the Navier—Stokes equations. For simplicity we use
the previous example of Adams-Bashforth for the convec-
tive terms and trapezoidal for the diffusive terms. This
results in

(un+1_uﬂ) 3 n n 1 n—1 n—1
i + 2(u -Viu 2(u -V)u ]
=_V n+1 V2 n+1 ]
P 4 3 VA ) (%)
Vout =0, (9b)

The idea is to approximate (9a} by calculating a tentative
velocity, u¥, using the momentum equations without the
pressure, and then use the pressure to project the tentative
velocity into the space of discretely incompressibie functions
thereby finding the final velocity. Mathematically this looks
like a simple time splitting of (9a),

u*_“”f é n n_l n—1 n—1
T +[2(u Viu 2(u Viu ]
1
=2—ReV2(u*+u"). (10a}
A+l _ ok
= AI“ - —Vprl, (10b)

The pressure in (10b) is found by taking the divergence of
Eq. (10b} and by invoking the incompressibility condition,
Eq. (9b). This results in the Poisson equation for the
pressure,

(V.V)p"H:Ai!V-u*. (10¢)

So the preceding equations are solved in the order (10a),
{10¢), (10b), at every time step. Rearranging both the
equations and their order gives

1 4t o .
AI[I_ZReV]u

=Alt|:1+2—Aégvz] u”
—I:E(u"-V)u"—l(u"“-V)u"“], (11a)

2 2
AV -V)p "+t =V.u*, (11b)
wtl=u*— g Vp it (11c)

The relations (11a)-(11c) bear a striking resemblance to the
block LU decomposition given by (8a)}-(8c). In fact, if the
definitions of the matrix 4 and the vector r are reviewed,
it is clear that the fractional step method is simply the
continuous analog of the block LU decomposition. This
analysis is reinforced by the fact that the error term, found
by adding (10a) and (10b) together and comparing to (9a),
is (41/2Re) V?Vp"*!, which is also just the continuous
version of what was found for the block LU decomposition.

Traditionally, it is only at this point in the fractional step
method that (11a)-(llc} are spatially discretized. This
makes the method independent of any particular spatial
discretization scheme. It also causes two fundamental
problems. Boundary conditions for the tentative velocity
and the pressure are now required (a task which has caused
considerable debate [3,10,11,12]), and improving on
the first-order accuracy of the method becomes very
difficult [13, 14].

The subtle differences between the traditional fractional
step method and the block LU decomposition are due to the
point at which spatial discretization and boundary condi-
tions are implemented. By impiementing boundary condi-
tions before any splitting or decomposition takes place, the
block LU factorization does not require any boundary
conditions on intermediate variables or on the pressure. Al
boundary condition information is already incorporated in
the submatrices and the boundary condition vector.

If the traditional fractional step formulation is still
preferred, or if one desires to analyze the appropriate
boundary conditions for such a formulation, this can be
accomplished by working backwards. That is, “correct”
boundary conditions are those which, when spatially dis-
cretized, will cause the system to recover the form given by
the block LU formulation. For example, for a no-slip
boundary, correct conditions are u* =0 and 9" '/on=0
on the boundary. This is because when discretized, V- with
Dirichlet boundary conditions is equivalent to the operator
D, and the discretization of V with Neumann boundary
conditions is equivalent to the operator G.
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Attempts to improve the time order of accuracy of the
fractional step method through improved boundary condi-
tions on intermediate variables and pressure appear to be
misled. The block LU decomposition shows that boundary
conditions are not an issue and that Arst-order accuracy in
time is a fundamental result of the method itself.,

4. THE GENERALIZED BLOCK LU DECOMPOSITION

Since we have an expression for the error term, it is
possible to use this information to create a second-order
method. This 1s done by approximating (2) by

A (ArA)GN/v" ! _ [r—(41/2 Re) LGp™ b-c's
(D 0 )(p)‘( 0 )+<b-c's)’
(12}

where the right-hand side vector, r, has been augmented by
an extra term. The error term now becomes ({At)/2 Re)
LG((p"*!'— p™)/4r). Although previously proposed [13],
this method has not to the author’s knowledge been
implemented. It has suspect stability properties due to the
ad hoc modification of the right-hand side vector.

Instead, consider the following generalization of the
block LU factorization method. Introduce the matrix B,
and then approximate (2) with

A (AB)G\(v'*!\ [r (b-c’s
(o 0 Yo o)=(6)+ocs)

This can be factored into

(g —SBG)(p:i 1) = (5) + (z ij) (14a)
(G-

which reduces to the following sequence of operations:

(13)

and

(14b)

Av¥=r+b.c's, (15a)
DBGp"*'=Dv*—p.¢’s, (15b})
viTl=v*_BGp"tl (15¢)

If B is chosen equal to A7 times the identity matrix, then the
generalization reverts to the original first-order block LU
decomposition. However, if B is chosen to be an
approximate inverse of A4, then higher order accuracy can
-be achieved. For example, if 4=(1/46)[1— (4¢/2 Re)L]

as in our previous examples, then choosing B=
At [T+ (4¢/2 Re) L] results in a second-order error term
(41/2 Re)* L*Gp™*'. Choosing B=At[I+ (4t/2Re)L +
(A2/2 Re)? L*] results in a third-order error term, and so
on. Of course, third-order and higher approximations are a
waste of effort in this case, since the original discretization
is only second-order accurate to begin with. But higher
order decompositions are certainly possible. As an aside, if
B=A""1is chosen, then the generalized block LU decom-
position is equivalent to the Uzawa method [15]. Uzawa
methods involve nested iteration and have traditionally
been avoided for that reason. The generalized block LU
decomposition is a more viable solution, providing
additional accuracy at the price of only slightly increased
computational work.

5. APPLICATION TO THE STEADY STOKES EQUATIONS

It may not be apparent that the generalized block LU
decomposition technique applies to a far wider class of
problems than the traditional time split fractional step
method. To illustrate this fact we outline how the method
could be used to solve the steady Stokes equations. These
equations are

Viv—Vp+1=0, (16a)
V.v=0 (16b)
Full discretization of these equations gives
—L G\(v f b-c's
(% 0)(p)=(0)+(b-c's)' )

This matrix problem has the same form as (2}, withd = — L
and r ={, and so it can be solved in the same manner. If an
approximate inverse, B, exists such that the product 4B
does not ruin the overall accuracy, then the generalized
block LU factorization will not alter the overall accuracy of
the discretization. It is quite likely that B will be available.
If A is being inverted via an iterative method, then it makes
sense to precondition A with an approximate inverse [16].
If the preconditioner is sufficiently good, we can use it for B
as well. The incomplete Cholesky factorization of A4 is a
good choice for B, since B will retain the same sparsity
structure as 4.

6. PRESSURE ISSUES

The pressure is a very interesting variable in the context
of numerical discretizations of the incompressible Navier—
Stokes equations. As has already been demonstrated,
boundary conditions on the discrete pressure are usuaily
unnecessary. A number of other complicated issues
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surrounding the pressure also exist and have been put off
until this point so that they could be addressed in full.

The role of the discrete pressure is to act as a Lagrange
multiplier. It implicitly guarantees that discrete continuity is
satisfied at every time step. This role of the discrete pressure
has two important consequences. First, the order of
accuracy of the pressure update does not effect the order of
accuracy of the velocity field. This is discussed in a paper by
Temam [177]. And second, no matter what scheme is used,
the discrete pressure will always be first-order accurate in
time. This is because the actual pressure is a solution of
Vip =V . (u-Vu), whereas the discrete pressure is a solution
of Vip"*!'=(1/4t)V-v* and the two source terms are
only identical to first-order in time. These conclusions are
confirmed by the numerical results presented in Section 7.

Let us consider the consequences of using a more com-
plicated pressure update scheme. A generalized scheme for
the pressure can be written as aGp™ ' + (1 —«) Gp”, where
a is a scaler varying from 0 to 1. Under these conditions
Eq. (2) becomes

A aGN\(v'\ 1= (1 —-a) At Gp” b-c's
(o W)Ge) (TS (e 0w

and the standard block LU decomposition is

Av¥=r—(1—a)dtGp"+b-c's, {(19a)
oAt DGp" ' =Dv*—p-c's, (19b)
vitl=y*— g At Gp" T, (19¢)

The error term now becomes (a A#/2 Re) LGp"* 1.

When a=1 the previous implicit Euler method is
recovered. When « is decreased to §, the pressure is updated
with the trapezoidal method. The error in the momentum
equations is accordingly reduced by a factor of a= 1, but
remains first-order. The error term is the result of the LU
factorization (or time splitting) and is not a result of the
pressure update scheme. It is therefore not fundamentally
altered by a change to a trapezoidal pressure update.

In addition, the trapezoidal pressure update scheme is
onty neutrally stable. The pressure term must account for
the entire interval in time from time step # to time step 7 + 1.
If p” is slightly underestimated then p”*' must make up for
this deficiency by a slight overestimation. In the next inter-
val this will result in p”*! being too large, and then p"*?>
being too small. Because the pressure is defined only up to
an arbitrary additive function of time, these oscillations do
not propagate to the velocity field, but they eventually cause
numerical difficulties. Choices of « less than one-half can
significantly reduce the splitting error, but should be
avoided since they are strongly unstable.

Finally, the discrete pressure has been used to develop an
incorrect argument, suggesting that the fractional step

method is second-order accurate in time. Using the
traditional time discretized formulation, it is claimed that
the error term can be absorbed into the pressure term by
defining a new pressure variable ¢"*' such that

At

V n+l=V n+l_
¢ P T3 Re

V2Vpitl, (20)

However, it is legal to define ¢” * ' only if the right-hand side
of {20) can indeed be represented as the gradient of a func-
tion. In the continuous case this is certainly true, since the
operators V and V? commute. However, our operators are
actually discrete (even in the traditional fractional step
method the operators must eventually be spatially dis-
cretized) and the question is, do those discrete operators
commute? That is, the error term can be absorbed only if it
can be written as the discrete gradient of a fTunction. If LG =
GQ, where @ is some matrix, then the fractional step
method will indeed be second-order accurate. In general,
the previous condition is not satisfied. A notable exception
is when periodic boundary conditions are in effect. Then,
even finite difference versions of the operator, G, satisfy the
above requirement. This may explain why previous
rescarchers thought it was their boundary conditions that
were destroying the accuracy. Another reason may be that
the error term contains a Laplacian operator, which tends
to be larger near boundaries.

7. NUMERICAL SIMULATIONS OF THE
NAVIER-STOKES EQUATIONS

To confirm the theoretical results presented in this paper,
numerical simulations of the unsteady Navier—Stokes equa-
tions, in a square domain of unit length, were performed.
The equations were solved using a second-order finite
volume scheme on a uniform mesh of 64 x 64 celis. This
spatial resolution was found to be more than adequate. The
diffusive terms were updated using the trapezoidal method,
and the pressure term was updated using either the implicit
Euler or the trapezoidal method. Convective terms were
updated explicitly using the second-order Adams-Bashforth
method. The initial condition was a vortex flow given by

u® = (1 — cos(2nx)) sin(27y) {21a)

v® = (cos(2ny) — 1) sin(2nx). (21b)
Either no-slip or periodic boundary conditions were used at
the domain boundarics.

Simulations were performed on a CM-2 [18] at a
Reynolds number of 5000. Measurements were made at a
time (r=10.1) which corresponds to at least 10 iterations at
the largest time step. Since an exact solution for this flow
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does not exist, data were taken for several A¢, and the error
was determined from the limiting value. Pressure error was
measured in the L? norm, but velocity error was measured
at a single point near the boundary (0.0625, 0.0625). This
was to make sure that no “boundary layer” with a decreased
order of convergence existed [127].

In the first series of tests we used no-slip boundary condi-
tions and an implicit Euler pressure update. The generalized
block LU decomposition was used with three different
approximate inverses: case (a), B=dt 1, case (b), B=
At[ I+ (4t/2 Re)L], and case (¢), B=A:[ I+ (4¢/2 Re)L +
(4¢/2 Re)> L*]. The convergence of the velocity error for
these three cases is shown in Fig. 1. Figure ! shows that case
(a), the standard block LU decomposition (or equivalently,
the traditional fractional step method) is very definitely first
order and that the first-order convergence can be remedied
by using the approximate inverse given in case (b).
Improving the approximate inverse to case (¢} does not
improve the order of accuracy, since the original discretiza-
tion was only second-order accurate to begin with.

It is interesting to note that in case (b) the matrix B
is positive definite only for small Az This means that
the matrix to be inverted in the Poisson equation
DBG(Atp"*')= Dv*— (b.c's) is also not positive definite
and that a conjugate gradient method will not converge
for the above equation. The limit on Ar such that B is
guaranteed to be positive definite goes like (4x)2 which
is very restrictive. We could use a solution technique for
indefinite matrices, but that defeats much of the purpose of
the block LU decomposition. The best solution is to use the

-4_
10 ]

10 ]
=
£
ks 10
o “-'
-7 i
10 1 )
] ‘." —»— casc [a)
-&- case (b)
".' & case (c)
10 T B
10* 10° 107
dt

FIG. 1. Temporal convergence of the welocity error when the
generalized block LU decomposition method is used. Case (a) uses the
“standard” first-order approXimate inverse, no-slip boundary conditions,
and an implicit Euler update for the pressure. Cases (b) and (¢) use second-
and third-order approximate inverses, respectively.

approximate inverse defined in case (c), which does not
improve the order of accuracy, but is always positive
definite.

Also note that the family of approximate inverses that
logically extend from cases (a)—(c) always results in an error
term that has a positive coefficient and a diffusive nature.
Therefore, the error term will always aid in the stability of
the overall method. This does not imply that the method
will be stable, but it does imply that the generalized block
LU decomposition will not make an otherwise stable
method unstable.

The next series of tests, shown in Fig. 2, examines the
effect of boundary conditions and pressure update schemes.
on the velocity error. The approximate inverse was fixed at
B=4rl Case(a) was a benchmark case with no-slip
boundary conditions and an implicit Euler pressure update.
As noted in Fig. 1 it is first-order. Case (b) is identical to the
benchmark case, except that pericdic boundary conditions
were used. As predicted in the previous section, under these
conditions the method is now second-order accurate in
time. Case (c) uses no-slip boundary conditions, but
employs a trapezoidal update for the pressure instead of an
implicit Euler. For large At the error approaches a factor of
one-half of the benchmark case. For smaller At the error is
dominated by an error in the convective terms rather than
the error in the factorization, and it is therefore identical to
the benchmark case.

To remove the complication of error in the convective
terms, Fig. 3 shows similar results from solutions of the
unsteady Stokes equations, where the convective terms are

-4_
10§

lerrorl

7. ,."/
10 3 o
] o« —x— casc {a)
-&- case (b)
] & gase ()
. -8
10 T T T
10 10 107
de

FIG. 2, Temporal convergence of the velocity zrror. Case (a) is the
“standard” method. Case (b) is the “standard” method, but using periodic
boundary conditions instead of no-slip boundary conditions, Case (c) is
the “standard™ method but uses a second-order trapezoidal update for the
pressure, instead of implicit Euler.
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10
-7
10
= ]
= ]
t n
o |
-8
10
- - case (3)
. - - case {b)
10 < —
10°* 10° 10°
dt

FIG. 3. Temporal convergence of the velocity error for the Stokes
equations. Case (a) uses an implicit Euler pressure update. Case (b} uses
trapezoidal pressure update.

identically zero. Case (a) uses an implicit Euler pressure
update, and case (b) uses a trapezoidal pressure update.
This demonstrates more clearly that the trapezoidal
pressure update reduces the factorization error by roughly
one-half but does not change the first-order convergence
behavior.

The final series of tests is concerned with the convergence
of the pressure and is presented in Fig. 4. Case (a) uses

-3

10
-4
10
= ]
5 J
= i
L
-5
10
—=— case (a)
| -&- case (b}
-+ case (¢)
1
10* 10° 10
dt

FIG. 4. Temporal convergence of the pressure error (L,). Case (a)
uses a second-order approximate inverse, no-slip boundary conditions,
and implicit Euler update for the pressure. Case (b) uses the second-order
trapezoidal update for the pressure. Case (c) also uses the second-order
trapezoidal update for the pressure, but only a first-order approximate
inverse.

no-slip boundary conditions, the second-order approximate
inverse, and an implicit Euler for the pressure update. Case
(b) switches to a trapezoidal pressure update. Case (c) uses
the first-order approximate inverse, with the second-order
trapezoidal pressure update. In all cases the pressure error
is only first-order. However, the trapezoidai method does
reduce the error by approximately a factor of one-half over
the implicit Euler method.

The numerical results confirm a number of important
facts. The traditional fractional step method is only second-
order accurate in time for periodic boundary conditions (or
special forms of the operator, ). The first-order accuracy
can be improved by using the generalized block LU decom-
position and is irrespective of the order of accuracy of the
pressure update. This is fortunate since the pressure is
always first-order accurate in time,

8. SUMMARY

By viewing the fractional step method as an approximate
block LU decomposition it has been shown that boundary
condition issues can be trivially solved and time accuracy
increased. It may be possible that ever more complicated
expressions for the boundary conditions on intermediate
variables and the pressure could improve the accuracy of
the traditional fractional step method [14]. Certainly,
boundary conditions (for example, periodic boundary
conditions) can intimately affect the temporal order of
convergence. However, it is hard to argue against the fact
that the simplest solution is to avoid the issue of boundary
conditions on temporary variables altogether, as the block
LU decomposition does.

The elegance of the generalized block LU decomposition
is further witnessed by its ability to solve any system of
equations of the form given by Eq. (2), not just those arising
from time-dependent problems. In addition, the formula-
tion is conducive to analysis and has led to the prediction
and explanation of many curious phenomena associated
with the fractional step method. Numerical experiments
have confirmed the efficacy of that analysis.
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